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Introduction

➢ Ernst Mach (1887, 1888)
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Ondes

stationnaires et instationnaires

Classification des ondes

Stationnaire Instationnaire
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Ondes de chocs

(shock wave)

Définition

➢ Une onde de choc est une zone de l’espace où les grandeurs physiques 

subissent de très fortes variations  sur une distance très faible - ordre du libre 

parcours moyen (microns) des molécules (mais parfois quelques millimètres…)

➢ Idéalisation comme des surfaces de discontinuités

Hypothèses

Conséquences

➢ Les grandeurs physiques sont discontinues à travers une onde de choc

Zone perturbée

Zone non-perturbée
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Classifications des ondes de chocs

Chocs droits (normal shock)

Normal à l’écoulement
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Classifications des ondes de chocs

Chocs droits
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Classifications des ondes de chocs

Chocs obliques (oblique shock)

Non-normal à l’écoulement

Onde de choc oblique
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Classifications des ondes de chocs

Chocs obliques

Choc droit

Choc oblique

2D Axisymétrique Choc courbe

(bow shock)
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Classifications des ondes de chocs
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Ondes de détente

➢ Définition 

▪ Une onde de détente est une zone de l’espace où la pression décroit de 

manière continue

▪ Un domaine de détente est composé d’un faisceau de lignes (ondes) de Mach

= Eventail de Prandtl-Meyer (Prandtl-Meyer fan)
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Ondes de détente

Faisceau continu d’ondes de 

détente

(ondes de Mach)
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Ondes de chocs et ondes de détente

1M 
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Ecoulement autour d’un profil en losange

Angle d’attaque nul
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Quelques exemples
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Quelques exemples
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Ondes dans d’autres contextes
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Ondes dans d’autres contextes
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Ondes dans d’autres contextes
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Ondes dans d’autres contextes
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Ondes dans d’autres contextes
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Ondes dans d’autres contextes
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Ondes dans d’autres contextes
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Formation d’ondes de choc et de détente

➢ Onde de compression isentropique

Repère fixe par rapport au fluide Repère fixe par rapport à l’onde

Front d’onde

au repos

a du− a

p dp+

p
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Formation d’ondes de choc et de détente

[ ( )] [( ) ]A p p dp Aa a du a− + = − −

➢ En appliquant la conservation de quantité de mouvement sur la surface de 

contrôle

➢ On obtient la formule d’Allievi

dp a du=  
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Formation d’ondes de choc et de détente

( ) ( )d A a du Aa  + − =

➢ En appliquant la conservation masse sur la surface de contrôle

➢ En la combinant avec la formule d’Allievi

d du

a




=

dp a du=  

2

s

dp p
a

d 

 
= =  

 
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Formation d’ondes de choc et de détente

➢ La première onde se propage à 

la vitesse du son dans le fluide 1, 

➢ La deuxième onde:

✓  va «surfer» sur le fluide 2 se 

déplaçant à la vitesse du

✓  va se propager à la vitesse du 

son du fluide 2,             

1a

2a

✓  va donc se propager dans le 

référentiel du fluide 1 à une 

vitesse

2 1a du a+ 

Fluide

au repos

Vitesse du 

front d’onde

du 1a

12

Fluide

au repos

Vitesse du 

front d’onde

du
1a

123

2a
2du

o  avec, pour un gaz parfait             

car la température dans la zone 

2 est maintenant plus haute 

que dans la zone 1

2 1a a
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Formation d’ondes de choc et de détente
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➢ La deuxième onde rattrape la 

première

➢ Onde de compression de plus 

grande amplitude

Onde de choc
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Formation d’ondes de choc et de détente

p

p

p

p

p

➢ La deuxième onde ne rattrape 

jamais la première

➢ Onde de détente restant 

isentropique
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Formation d’ondes de choc et de détente

0t = 1t = 2t = 3t = 4t =

p

Choc

Distance x
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Formation d’ondes de choc et de détente

0t = 1t = 2t = 3t =

p

Distance x
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Formation d’ondes de choc et de détente

p dp+

p wu

p

Distance x

w wu du+

u du+
u

u

Distance x
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Formation d’ondes de choc et de détente

wu u a= +

Vitesse de l’onde (wave)

wdu du da= +

Vitesse du fluide

Vitesse du son

wdu du da

dp dp dp
= +

➢ Objectif: savoir comment varie la vitesse de l’onde avec la 

pression pour un fluide quelconque
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Formation d’ondes de choc et de détente

➢ Formule d’Allievi dp a du=  
1du

dp a
=

wdu du da

dp dp dp
= +

➢ Formule Chap 4

2 2
( 1)

da

dp 
=  −

4 2

3 22
s

a v

v p

 
 =  

 

Dérivée fondamentale

Pour un gaz parfait: 
1

2

 +
 =

avec    
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Formation d’ondes de choc et de détente

➢ Ainsi
1 1

( 1)wdu du da

dp dp dp a a 
= + = +  −

1wdu

dp a
= 

➢ La variation de la vitesse de l’onde avec la pression dépend du signe de 

➢ Pour un gaz parfait
1

1
2

 +
 =  donc positif

➢ Pour la plupart des fluides 0 

➢ Pour des fluides normaux, on obtient toujours des chocs de compression.



Flavio Noca Chap 6 – Intro Chocs

Formation d’ondes de choc et de détente

➢ Cas ésotérique

1wdu

dp a
= 

➢ Pour des fluides proches du point critique, on peut avoir des chocs de 

détente (ou raréfaction).

0 =

p

v

0

0 

Isentrope

Fluides «normaux»

Point critique

4 2

3 22
s

a v

v p

 
 =  

 

Prop à la courbure de 

l’isentrope sur 

diagramme p-v
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Théorie de la formation d’ondes de choc

t = t1

1P

uP

uQ
1Q

u

x
CA

➢  On considère un domaine monodimensionnel avec la distribution de vitesse 

u(x) suivante 

➢ Etudions la propagation de cette perturbation et celle des points P et Q. 

➢ On adopte les hypothèses suivantes

• Pas de forces volumiques

• Pas de rayonnement

• Ecoulement isentropique

• Pas de transfert de chaleur
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➢ Equations de conservation de la masse et de la quantité de mouvement

➢ Comme le fluide est idéal, la propagation est isentropique, u et p sont des 

fonctions de . Ainsi,

➢ Pour une solution non triviale, il faut déterminant nul. On obtient finalement,

0
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t x x
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0

u u p
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1
0

u u dp d u
u

t x d du x



 

  
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0
1

1

d d u
u

du du t

dp d u
u

d du x

 

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  = 
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  

1

21du dp

d d  

 
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1

2dp d
u

d



 

 
=   

 


Théorie de la formation d’ondes de choc
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➢ Comme la propagation est isentropique, on a

➢ Par substitution inverse de la relation isentropique et en utilisant la relation de la 

célérité du son ci-contre, on obtient

1
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u

d
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Théorie de la formation d’ondes de choc

( )0

2

1
u a a


= −
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➢ Si on substitue la première équation ci-contre dans la seconde, on a

➢ Si on substitue la première équation ci-contre dans celle précédente, on a

➢ Par définition, la différentielle du s’écrit comme suit

➢ Interprétation physique

u est constante pour des points qui se déplacent à la vitesse u+a

1
0

u u dp d u
u

t x d du x



 
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+ + =
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21du dp
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2

0
u dp u

u
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  

( )0
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( ) 0
u u

u a
t x

 
+ + =

 

0

1

2

dx
u a a u

dt

 +
= + = +

u u u dx u
du dt dx dt

t x t dt x

    
= + = + 
    

➢ Donc, pour du = 0, on obtient par comparaison

0
u dx u

t dt x

 
+ =

 
avec

Théorie de la formation d’ondes de choc
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➢ On peut ainsi étudier la propagation des points P et Q

t = t1

1P

uP

uQ
1Q

u

x
CA

t = t2

2P

2Q

t = t3

3P

3Q

t = t4

4P

4Q

choc

Il existe 2 solutions en t = t4 ! impossible ! écoulement non-isentropique  => choc

0

1

2
P

P

dx
a u

dt

 + 
= + 

 

0

1

2
Q

Q

dx
a u

dt

 + 
= + 

 

( )1 0 1

1

2
n n P n nP P a u t t


− −

+ 
= + − 
 

( )1 0 1

1

2
n n Q n nQ Q a u t t


− −

+ 
= + − 
 

0

1

2

dx
a u

dt

 +
= +

Théorie de la formation d’ondes de choc
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